Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Eur Radiol Exp ; 7(1): 18, 2023 04 10.
Article in English | MEDLINE | ID: covidwho-2303206

ABSTRACT

BACKGROUND: The role of computed tomography (CT) in the diagnosis and characterization of coronavirus disease 2019 (COVID-19) pneumonia has been widely recognized. We evaluated the performance of a software for quantitative analysis of chest CT, the LungQuant system, by comparing its results with independent visual evaluations by a group of 14 clinical experts. The aim of this work is to evaluate the ability of the automated tool to extract quantitative information from lung CT, relevant for the design of a diagnosis support model. METHODS: LungQuant segments both the lungs and lesions associated with COVID-19 pneumonia (ground-glass opacities and consolidations) and computes derived quantities corresponding to qualitative characteristics used to clinically assess COVID-19 lesions. The comparison was carried out on 120 publicly available CT scans of patients affected by COVID-19 pneumonia. Scans were scored for four qualitative metrics: percentage of lung involvement, type of lesion, and two disease distribution scores. We evaluated the agreement between the LungQuant output and the visual assessments through receiver operating characteristics area under the curve (AUC) analysis and by fitting a nonlinear regression model. RESULTS: Despite the rather large heterogeneity in the qualitative labels assigned by the clinical experts for each metric, we found good agreement on the metrics compared to the LungQuant output. The AUC values obtained for the four qualitative metrics were 0.98, 0.85, 0.90, and 0.81. CONCLUSIONS: Visual clinical evaluation could be complemented and supported by computer-aided quantification, whose values match the average evaluation of several independent clinical experts. KEY POINTS: We conducted a multicenter evaluation of the deep learning-based LungQuant automated software. We translated qualitative assessments into quantifiable metrics to characterize coronavirus disease 2019 (COVID-19) pneumonia lesions. Comparing the software output to the clinical evaluations, results were satisfactory despite heterogeneity of the clinical evaluations. An automatic quantification tool may contribute to improve the clinical workflow of COVID-19 pneumonia.


Subject(s)
COVID-19 , Deep Learning , Pneumonia , Humans , SARS-CoV-2 , Lung/diagnostic imaging , Software
2.
Eur Radiol Exp ; 7(1): 3, 2023 Jan 24.
Article in English | MEDLINE | ID: covidwho-2214645

ABSTRACT

BACKGROUND: To develop a pipeline for automatic extraction of quantitative metrics and radiomic features from lung computed tomography (CT) and develop artificial intelligence (AI) models supporting differential diagnosis between coronavirus disease 2019 (COVID-19) and other viral pneumonia (non-COVID-19). METHODS: Chest CT of 1,031 patients (811 for model building; 220 as independent validation set (IVS) with positive swab for severe acute respiratory syndrome coronavirus-2 (647 COVID-19) or other respiratory viruses (384 non-COVID-19) were segmented automatically. A Gaussian model, based on the HU histogram distribution describing well-aerated and ill portions, was optimised to calculate quantitative metrics (QM, n = 20) in both lungs (2L) and four geometrical subdivisions (GS) (upper front, lower front, upper dorsal, lower dorsal; n = 80). Radiomic features (RF) of first (RF1, n = 18) and second (RF2, n = 120) order were extracted from 2L using PyRadiomics tool. Extracted metrics were used to develop four multilayer-perceptron classifiers, built with different combinations of QM and RF: Model1 (RF1-2L); Model2 (QM-2L, QM-GS); Model3 (RF1-2L, RF2-2L); Model4 (RF1-2L, QM-2L, GS-2L, RF2-2L). RESULTS: The classifiers showed accuracy from 0.71 to 0.80 and area under the receiving operating characteristic curve (AUC) from 0.77 to 0.87 in differentiating COVID-19 versus non-COVID-19 pneumonia. Best results were associated with Model3 (AUC 0.867 ± 0.008) and Model4 (AUC 0.870 ± 0.011. For the IVS, the AUC values were 0.834 ± 0.008 for Model3 and 0.828 ± 0.011 for Model4. CONCLUSIONS: Four AI-based models for classifying patients as COVID-19 or non-COVID-19 viral pneumonia showed good diagnostic performances that could support clinical decisions.


Subject(s)
COVID-19 , Pneumonia, Viral , Humans , Artificial Intelligence , Retrospective Studies , SARS-CoV-2 , Tomography, X-Ray Computed/methods
3.
Tomography ; 8(6): 2815-2827, 2022 11 25.
Article in English | MEDLINE | ID: covidwho-2123856

ABSTRACT

Growing evidence suggests that artificial intelligence tools could help radiologists in differentiating COVID-19 pneumonia from other types of viral (non-COVID-19) pneumonia. To test this hypothesis, an R-AI classifier capable of discriminating between COVID-19 and non-COVID-19 pneumonia was developed using CT chest scans of 1031 patients with positive swab for SARS-CoV-2 (n = 647) and other respiratory viruses (n = 384). The model was trained with 811 CT scans, while 220 CT scans (n = 151 COVID-19; n = 69 non-COVID-19) were used for independent validation. Four readers were enrolled to blindly evaluate the validation dataset using the CO-RADS score. A pandemic-like high suspicion scenario (CO-RADS 3 considered as COVID-19) and a low suspicion scenario (CO-RADS 3 considered as non-COVID-19) were simulated. Inter-reader agreement and performance metrics were calculated for human readers and R-AI classifier. The readers showed good agreement in assigning CO-RADS score (Gwet's AC2 = 0.71, p < 0.001). Considering human performance, accuracy = 78% and accuracy = 74% were obtained in the high and low suspicion scenarios, respectively, while the AI classifier achieved accuracy = 79% in distinguishing COVID-19 from non-COVID-19 pneumonia on the independent validation dataset. The R-AI classifier performance was equivalent or superior to human readers in all comparisons. Therefore, a R-AI classifier may support human readers in the difficult task of distinguishing COVID-19 from other types of viral pneumonia on CT imaging.


Subject(s)
COVID-19 , Pneumonia, Viral , Humans , COVID-19/diagnostic imaging , SARS-CoV-2 , Artificial Intelligence , Pneumonia, Viral/diagnostic imaging , Tomography, X-Ray Computed/methods
4.
Eur J Radiol ; 138: 109650, 2021 May.
Article in English | MEDLINE | ID: covidwho-1141737

ABSTRACT

PURPOSE: The capability of lung ultrasound (LUS) to distinguish the different pulmonary patterns of COVID-19 and quantify the disease burden compared to chest CT is still unclear. METHODS: PCR-confirmed COVID-19 patients who underwent both LUS and chest CT at the Emergency Department were retrospectively analysed. In both modalities, twelve peripheral lung zones were identified and given a Severity Score basing on main lesion pattern. On CT scans the well-aerated lung volume (%WALV) was visually estimated. Per-patient and per-zone assessments of LUS classification performance taking CT findings as reference were performed, further revisioning the images in case of discordant results. Correlations between number of disease-positive lung zones, Severity Score and %WALV on both LUS and CT were assessed. The area under receiver operating characteristic curve (AUC) was calculated to determine LUS performance in detecting %WALV ≤ 70 %. RESULTS: The study included 219 COVID-19 patients with abnormal chest CT. LUS correctly identified as positive 217 (99 %) patients, but per-zone analysis showed sensitivity = 75 % and specificity = 66 %. The revision of the 121 (55 %) cases with positive LUS and negative CT revealed COVID-compatible lesions in 42 (38 %) CT scans. Number of disease-positive zones, Severity Score and %WALV between LUS and CT showed moderate correlations. The AUCs for LUS Severity Score and number of LUS-positive zones did not differ in detecting %WALV ≤ 70 %. CONCLUSION: LUS in COVID-19 is valuable for case identification but shows only moderate correlation with CT findings as for lesion patterns and severity quantification. The number of disease-positive lung zones in LUS alone was sufficient to discriminate relevant disease burden.


Subject(s)
COVID-19 , Humans , Lung/diagnostic imaging , Retrospective Studies , SARS-CoV-2 , Tomography, X-Ray Computed , Ultrasonography
SELECTION OF CITATIONS
SEARCH DETAIL